LLaMA 系列模型
LLaMA Meta AI 推出的 LLaMA 系列开源模型已成为大语言模型社区的基石之一,对推动开放研究和应用产生了深远影响。从 2023 年初发布的开创性 LLaMA,到同年性能显著提升的 LLaMA 2,再到针对特定领域(如代码、安全)的衍生模型,以及 2024 年和 2025 年相继推出的新一代 LLaMA 3 和 LLaMA 4,Meta 持续致力于提升开源模型的性能,使其逐步逼近最先进的闭源模型。下面,我们将依次介绍每个主要模型的关键技术细节。 ...
LLaMA Meta AI 推出的 LLaMA 系列开源模型已成为大语言模型社区的基石之一,对推动开放研究和应用产生了深远影响。从 2023 年初发布的开创性 LLaMA,到同年性能显著提升的 LLaMA 2,再到针对特定领域(如代码、安全)的衍生模型,以及 2024 年和 2025 年相继推出的新一代 LLaMA 3 和 LLaMA 4,Meta 持续致力于提升开源模型的性能,使其逐步逼近最先进的闭源模型。下面,我们将依次介绍每个主要模型的关键技术细节。 ...
这篇博客主要介绍一种比 RLHF 更精简的替代算法 DPO。与 RLHF 一样,DPO 目的是使模型输出与人类偏好保持一致,但它在实现上更加简单,并且对资源的需求更低。在项目资源受限的情况下,DPO 是一个实用解决方案。 ...
背景 随着大语言模型(LLM)在各行业的广泛应用,企业和研究团队面临将通用模型适配特定领域的迫切需求。通用大语言模型在处理特定领域任务时,往往无法满足深度需求。例如,在闭源编程语言的应用中,现有开源模型对其语法和语义的理解不足,导致在代码生成和纠错等任务中表现不佳。因此,注入领域知识并训练专属的大语言模型,成为提升开发效率和代码质量的关键步骤。 ...