Scaling Laws
From the evolution of the GPT series, researchers have gradually realized that as long as model parameters, training data, and compute resources are continuously scaled up, the performance of large models improves along a stable and predictable path. This predictability is characterized by Scaling Laws, which provide the theoretical foundation and practical confidence for high-cost pre-training. As model scale, alignment techniques, and inference-time compute co-evolve, the boundaries of AI capabilities are being systematically pushed. Scaling laws are not only the foundation for building next-generation models but also a key methodology for continuously improving model capabilities under compute constraints. ...