vLLM: High-Throughput, Memory-Efficient LLM Serving

As the parameters of Large Language Models (LLMs) continue to grow, deploying and serving these models presents significant challenges. vLLM is an open-source library designed for fast, convenient, and cost-effective LLM inference and online serving. Its core lies in the PagedAttention algorithm, which efficiently manages the Key-Value cache (KV Cache) in the attention mechanism. Evaluation Metrics To evaluate the performance of LLM inference and serving engines, we primarily focus on the following metrics: ...

2025-05-17 · 20 min · 4222 words · Yue Shui

Parallelism and Memory Optimization Techniques for Training Large Models

Background Recently, the number of parameters in large models has been continuously increasing, from the initial billions to today’s hundreds of billions or even trillions. While large models have brought unprecedented application effects, they have also triggered a series of severe challenges in computing resources, memory management, and training stability. Therefore, this blog summarizes some commonly used distributed parallel training and memory management techniques, hoping to help everyone better train and optimize large models. ...

2025-03-01 · 61 min · 12817 words · Yue Shui